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Abstract
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bounded complete Reinhardt domains in C".
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1. Introduction

A bounded complete Reinhardt domain R in C" is a bounded complete n-circled
domain, i.e., if z= (z1,...,z,) €R, then i(e"zy,...,e%z,)eR for all ieC, |I|<1
and all 0y,...,0,eR. As usual, if zeC" and xe(NuU{0})", then we write z* =
2tz el =l and |of = oy + - +a,. P("C") is the space of all m-
homogeneous complex valued polynomials Z‘“lzmcaz“. For 1<p< oo we write, as

usual, /) for C" endowed with the norm ||z||, = (37} _, |z« ")/ and By for its open
unit ball.

In the last years (see [1-10,14,15,17 p. 321-322,18-20,22]) a lot of attention has
been given to several multidimensional generalizations of a classical theorem of Bohr
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[11], namely: let f = Z,ﬁoakzk be a holomorphic function on D, the open unit disk of
C, such that |f(z)|<1 for each zeD. Then 3" j|axz"| <1 when |z| <1, and moreover
the radius . 3 Is the best possible. This 1 5 is called the Bohr radius of D.

The first Bohr radius of a bounded complete Reinhardt domain R was defined by
Boas and Khavinson [10] to be K(R) := sup r, the supremum taken over all 0<r<1
such that whenever the power series D, o}z satisfies [, ¢ oy ¢z’ <1
for all ze R, it follows that 3, (v o)[c2z”|<1 for all zerR.

In [16, (1.3)], Dineen and Timoney, while investigating the existence of absolute
monomial basis for spaces of holomorphic functions over infinite dimensional locally
convex spaces, required a several variables version of the classical result of Bohr
quoted above. They obtained a result, which in the terminology of Boas and
Khavinson is an upper bound for the Bohr radius of the polydisc, that is for all >0

there exists C(g)>0 such that K(B, )<C(e )nZH (see [10,15, 4.6, p. 321] for a
clarification). In [10, Theorem 2], Boas and Khavinson obtained lower and upper
bounds for K(B,» ), and also the optimal lower estimate which holds for all complete
Reinhardt domains [10, Theorem 3]. Then Aizenberg [1, Theorem 9] got lower and
upper bounds for B, and finally Boas [9, Theorem 3] solved the problem for
B, (I<p<oo) completely. All these results are summarized in: for every choice of
coefficients b, and ¢,

[

1
3o 1
\/Ell—,

n

7 K(Bm) <2\/10gn if 2<p< 0. (L.1)

Linking Bohr radii with local Banach space theory, a general study of the behavior
of K(By) with respect to the dimension of X, where X = (C",||.||) is a Banach space
such that the canonical basis is normalized and 1-unconditional, is given in [12]. Our
main estimates are based on a probabilistic tool from [12, Theorem 3.1]. This result
was improved in [13, Theorem 3.1], and we are going to apply this version in Section
1 of this article to obtain lower and upper estimates of K(R) for any bounded
complete Reinhardt domain of C”.

In [1], Aizenberg introduced the second Bohr radius B(R) of a bounded complete
Reinhardt domain R as the largest 0<<r<1 such that whenever the power series
Dse(NufoyCaz” satisfies [0, qopycaz’[ <1 for all zeR, it follows that

|
1 =
<K(By)< 3<ﬂ) "if 1gp<2,
n

W] — W

D ue (N0} SUP-e,r [€22*| < 1. As Aizenberg points out in [1], B(B/, )= K(Bs, ),
and in particular B(D) = % Moreover in [1, Theorem 4], Aizenberg proved that

L (2) aw 0

for any bounded complete Reinhardt domain R in C" and n>2.
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n [9, Theorem 5], Boas proved that

1
1 2\ logn .
—<1—(Z) <BBm)<4—— if 1<p<2,
30" <3) By)<d=,~ iisr
1.1 1.1
1/1\2% logn\2"»
g(_) pr(B/n)<4(0gn> ! if 2<p< 0. (1.3)
n ’ n

In Section 2 of our paper, we are going to obtain general estimates (that can be
actually computed in many cases) for the second Bohr radius of bounded complete
Reinhardt domains of C”.

2. General estimates for the first Bohr radius

Clearly, K(R), the first Bohr radius of R, is the supremum over all 0<r<1 such
that

sup Z e, (rz)*| < sup Z cyz” (2.1)
ZER e (NUT{0}) ZER|, e (NGO}

for every power series ) c¢,z* convergent on R. Given meN we define
K, (R) =suprel0,1],

the supremum taken over all 0<r<1 such that whenever the m-homogeneous
polynomial } -, _, c,z* satisfies [, _, c;z*| <1 forall ze R, then 37, _, |cxz*| <1 for
all zerR. Obviously, K, (R) = sup re]0, 1] such that

o|=m

sup Z |euz |<7 sup Z ¢z (2.2)

ZER =m R lof=m

moreover, K(R)<K,(R). For the following lemma note that for any bounded
complete Reinhardt domain R in C”

1Pl = sup{|P(x)[ : xe R}
defines a norm on the space P("C").

Lemma 2.1. If R is a bounded complete Reinhardt domain in C", then for each meN

= sup Z €,CyZ"| 1 ZER, Z 2| <L leg| <ol =m p. (2.3)
- - R

Kn(R)"
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Proof. Clearly,

sup Z £4C,2%| = sup Z |enz®|

zeR ey <1 |e|=m zeR |e]=m

for all m-homogeneous polynomials Z‘
deduce from (2.2) that

¢yz*. To finish the proof it is enough to

o|=m

1
=su 2" 1 zeR, 2| <1y,
R (R SUP > leaz”| : >

|o|=m lot|=m R

which obviously gives the desired equality. O

By normalizing and applying Lemma 2.1 we get for every choice of coefficients b,
and ¢,

sup Z |bycyz \< ( 7 s sup |b,| sup Z c,z%. (2.4)

z€R lot|=m ZeR Jor|=m

The next result links the first Bohr radius K(R) and the sequence (K, (R)),~

m=1"*

Proposition 2.2. Let R be a bounded complete Reinhardt domain in C". Then we have
Linf K, (R)<K(R) <min{§, inf Km(R)}.

The proof of this proposition is very similar to [12, Proof of Theorem 2.2] taking
into account that the right part of equality (2.3) is, by definition, y,,(P("C"), ||.||z).
the unconditional basis constant of the monomials in P("C") when endowed with
the norm |||z, i.e., we have that for each meN

1
Kn(R)™

= 1 (P("C"), 1]&)-

We will need the following probabilistic estimate from [13, Corollary 3.2] (see also
[12, Theorem 3.1]).

Theorem 2.3. Let (&)
variables on a probability space (Q, 1) (each ¢ : Q—{—1,1} takes the values +1 and
—1 with equal probability %), and let ¢,, |o| = m, be scalars. There exists a constant

laf=m be a family of independent standard Bernoulli random
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3m—=1 3 , . .
0<C,,<2 2 m2, such that for each bounded circled set U in C" we have

sup cue 2 du
\/Q zeU ‘Z

o|=m
m

<+/lognC,, su Cy su z su Zk|.
Vlog P{l o } p(Zlkl) Zeg;|k|

Jot|=m

As a consequence, we get the following upper estimate for K, (R).

Corollary 2.4. If R is a bounded complete Reinhardt domain in C", then for each m
n m—1
sup.cr(Yf_y Zk|2>”2>

SupzeRZZ:l |Zk|

K (R)" <D,,\/logn <

3m 3

where 0<D,, <Vm!2

Proof. As R is n-circled and balanced we have that
n n m
<sup Z |Zk|> Su}lg Z Zk (Z Zk)
e k=1
Hence, by (2.4) we have for each weQ

zeR =1
<sup Z |zk|> b Y e (0)

zeR \ac|:m

m

m!
= sup E — %
o!

zeR |e]=m

= sup
zeR

vm! sup m!
Km(R)m Z€R| 15 Tm al

<

By integrating this inequality and applying Theorem 2.3 we obtain

m
vm! m!
su z < ——— su — &y (w)z* dw
<45113 z:: | k|> [2 I<m(R) zeg \942:;11 O(! ( )

m—1
m n 5 2 n
< —+/lognC,, su Zx su z
Kn(R™V O8I R ,;"' 262;“'

from where the conclusion follows. [

We need to introduce a new notation in order to be able to compare Bohr radii.
Let Ry and R; be two bounded complete Reinhardt domains in C"; define

S(R],Rz) 11’1f{b>0 R Csz}
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As an example, if R is a bounded complete Reinhardt domain in C”, then

n /p
S(RyB/;)ZSUP<Z |Zk|p> , Isp<oo,

Z€R \ j—1
S(R,B ) =sup sup |z]. (2.5)

zeR k=1,....n

In particular, it follows from Hélder’s inequality that

1
S(By ,Bp) =mw, 1<p< oo,

11
S(Bm,Bp) =n 4, 2<q< 0. (2.6)

Lemma 2.5. For two bounded complete Reinhardt domains R, and R, in C" we have
1

K(Rz) SK(RI) < S(Rl, Rz)S(Rz, Rl)K(R2).

Proof. To check the first inequality, assume that

E c,z"
o

Then, for every 6; >0

Hence, for every 0<e<K(R,),

1
|y |z%|<1 for all ze(K(Ry) —¢)Ra.
za: “(S(Ry, Ry) +01)

But this obviously implies that for every d, >0
Sler L |( ey
~  (S(Ry, Ry) + 1) [\S(R1, R2) + &
=) lal < K(R,) — ¢ z)a
— T I\(S(R2, R1) +61)(S(R1, Ry) + 02)

which finally shows
1
S(R1, R2)S(Ry, Ry)

<1 for all zeR;.

<1 for all zeR,.

<1 for all zeRy,

K(R)<K(Ry).

By interchanging R; and R, in the formula above, we obtain the second
inequality. [
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Given a bounded complete Reinhardt domain R in C", it is immediate to check
that S(R,¢tR) = ¢! and S(¢tR, R) = t for all t>0, hence we get another elementary
but useful consequence.

Corollary 2.6. Let R be a bounded complete Reinhardt domain in C" and t>0. Then
we have K(R) = K(tR).

By Boas and Khavinson [10, Theorem 3] we know that K(R)}#l7 for each R.

Then Lemma 2.5 combined with Aizenberg’s result from (1.1) yields the following
general lower bound.

Theorem 2.7. Let R be a bounded complete Reinhardt domain in C". Then, we have

1 1
e (3\/’7 3/eS(R, Bs;)S(B, R)) <K(R).

Next, we give a general upper estimate for the first Bohr radius.

Theorem 2.8. Let R be a bounded complete Reinhardt domain in C". We have

n 2\1/2
sup. e g (2 g—112 ")
K(R)<e’23 %\ /logn—==< :
SUP¢ g1 |7k]

or equivalently

S(R, Bsy)
K(R)<e32Y2\/logn———227,
(R) s S(R, Bs)

Proof. By Proposition 2.2 and Corollary 2.4 we have that for each m
m=1
3m—1

31 n 20\1/2\ m
K(R)< Kvm(R)S( /logn /m|2 3 mz)% <SupzeR(Zkl|Zk ) >

SupzeRZZ:l|Zk|

1
3m—1 3 1 - f "
= (\/@\/1’7’1—'2 2 mi)m ( SupLER§k:] |Z§| 1/2>
sup-c g (D=1 l2«”)

2\1/2
. Sup-c (S lze)

SUP.e RY k1 ||

Now, we consider >0 such that 7R is a subset of the polydisc B and there exists
zo € 1R satisfying ||zo]|, = 1. We have

1 1
< SupzeRZZ:l |Zk| )m_ < supzetRZZ:l ‘Zk| )m<nl/m (2 7)
2\1/2 - n 2\1/2 = : '
sup. e g3l sup. < x (Xj-a 2¢l*) "
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Moreover, in the proof of Defant et al. [12, Theorem 4.2] it is shown that there exists
anm (m=1if n =2 and m = [logn] if n>3) such that

1
3m—1 3\m 3
(\/log /ml2 3 m2) n'/Mm<e322\/logn (2.8)
from which the conclusion follows. [

We obtain the following interesting special case.

Corollary 2.9. Let R be a bounded complete Reinhardt domain in C" such that
B{r]tCRCng Then

1 1 1
= 7 —<K(R)< 6323/2 V log n——<n .
3v/esup.crd |7kl (R) SUPe R k17|

Proof. It is immediate from our lower and upper estimates (Theorems 2.7 and 2.8) as
S(R,Bs)<1, S(Bs,R)=1 and, by (2.5), S(R, Bs1) = sup.cgy_j_ilzx|. O

Define for 0<py< o0, k=1, ...,n, the bounded complete Reinhardt domain

n
R(p” = {ZEC” : Z |Zk
k=1

Pk<1}.

Corollary 2.10. Let 1<p;<2, k=1, ...,n. Then we have

1 |
— - <K (R, <22\ logn
3y/esup.. R(,,,C)Zkzl |2k | 7

1

Sup, ¢ R ZZ:1 |Z/c | ’

Sometimes more precise estimates are possible:
Example 211, If 1<pr <2, k=1,....,2nand py =2, k=1, ...,n, then

1
<KR <e323/2 log2n——.
This result clearly follows from Theorem 2.7 and the fact sup.. R@A,)leil |zk| = /1.

We conjecture that there exists a constant C>0 such that if 2<p, < o0, k =
1,...,n, then

11 1
67_ K(R(p/( ) C\/ lOgnW
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3. General estimates for the second Bohr radius
The upper estimate for the second Bohr radius is again based on our probabilistic
tool Theorem 2.3. Again, we begin with some elementary facts, which are analogues

of Lemma 2.5 and its corollary.

Lemma 3.1. Let Ry and R, be two bounded complete Reinhardt domains in C", and
t>0. Then

(1) B(R])SS(R],RQ)S(RQ,Rl)B(Rz).
(2) B(R1) = B(1R,).
(3) B(R))<tB(R,), whenever Ry = Ry ctR;.

Proof. The proof of (1) follows the same pattern as the proof of Lemma 2.5.
Also (2) is obtained from (1) in an analogous way as Corollary 2.6 is obtained
from Lemma 2.5. Finally, (3) is a consequence of (1) since S(Ry,R;)<1 and
S(R],R2)<t. O

As B(B: ) = K(By ) (see the introduction) and ﬁSK (B ) (see (1.1)), we get,
using also (1.3), the following lower estimate of the second Bohr radius.

Proposition 3.2. Let R be a bounded complete Reinhardt domain in C". We have

1 1 1
—max| —, <B(R).
3 (” VnS(R, By )S(By, R)) (B)
In order to formulate our upper estimates we again need some more notation: For
a bounded complete Reinhardt domain R in C" we write

1
bo(R) = (inf sup |z“|) " meNuU{0),

[e[=m zeR
az(R) = bl(R),
ail(R) = [logn](R)7 nz=3. (31)

Clearly, if R; and R, are complete Reinhardt domains in C”" such that R; = R, then
ay (Rz) <an(R1).

Theorem 3.3. For each bounded complete Reinhardt domain R in C" we have

1/2

n 2
B(R) <¢&*2%%\/log na,(R) SupZER(Z;;:l z4l)
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Proof. By Theorem 2.3, we know that there are signs ¢, = +1, |z| = m, such that

m!

sup Z aa—'z“
zeR loj=m o
m=1
3103 m! 4 5\ 2
log n22" 2m2 sup {/— sup Z |zk] sup Z |zk|
Jot|=m al cer =1 zeR 1 _

m—1

31 3 n 2 n
<+/log n22" 2m2vm! sup Z |2k ) sup Z |2k |-
zeR ZER 3

k=1

Hence, by definition of the second Bohr radius, we get for every 0 <o <1

m!
Z — sup |z*]
ol 5

|o|=m ze(1-90)B(R)R
mfl
<+/lo n22m 2m2 su z su z
izt kvt sup (37 ) sy 3l

Thus

m—1

2 n
n"B(R)"b <\/10gn22 2m2\/ sup<§ zk|2> sup E |2k |-
zeR 1

k=1

By taking the mth root
1

( Sup:eRZZ:l|Zk| )ﬂlb (R)
n 2\1/2 m
sup.e r(X 112k

3=

3m-1 3
R)< <\/logn\/m!2me§)

SupzeR(Zk 1|Zk| )
n

=

By (2.7) we get
1

3m—=1 3\m
R)<<\/lognm2Tmi> ﬂl/'”b,,,( )SUP~eR(Zk 1|Zk|)

No|—

n

Finally, by taking m=1 if n =2, m=[logn] if n=3 and applying (2.8) we
obtain

=

B(R)<e323/2\/lognan(R) up- R (k- 1ETi ) 0

n

The following result combines the preceding two statements.
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Corollary 3.4. Let R be a bounded complete Reinhardt domain in C". Then we have

1 1 1 S(R, Bsy)
z z <B(R)<2Y2\/1 W(R) ———=2
3max{n’\/ﬁS(R,B,g)S(B/;,R)} (R)<e ognax(R)

n

In particular, if R< By, then

1 1
§< B(R)<e*2%%\/log na,(R) -

Lemma 3.5. Let py, ...,p,>0. Then for each multi-index o.e (NU{0})" we have

o %y
.. G
sup{|z*] : z€ Ry} = —F T
o On Dn
(p_:+ _|_p_”)p1 !

Proof. Given B = (), u= (ux)€[0,+0)" we denote |B|=p;+ -+ B, =

uf‘ b and 0 ={uel0,+o0)" :u; + -+ +u,<1}. Clearly, it is enough to prove
that

B
sup{v’ : ue Q} = # for all Bel0,+0)".
To do that we need the following inequality (concavity of log): Given ay, ...,a,>0

1 an

and q\, ...,q,>1 such that q—ll—i— o +L =1, it holds that a; ...a, <2+ - + %

qn q1 E

We can assume that §;, >0 forall k =1, ..., n. Let ue Q. By applying the concavity

B
of log with g = % and a; = (%)W forall k=1,...,n,

B\ 18]
(u_ﬁ> Pm o Bt
p Bl By 1Bl B, |l
Hence
B
uﬁgﬁ_
‘ﬁ‘lﬂl
for all ue Q. But, if we take u = (u);_, with u = % for all k =1,...,n, we have
that u; + --- +u, = 1 and uf = % This completes the proof. [
1 1
For z = ((“"7")171, e (‘%)I’u), we obtain
ETR-
ol
Sup{‘zo‘l : ZER(pk)}Zﬁ (32)

|a|ﬁ7 b
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o )I/P

If in the above lemma we take p; = --- = p, = p>1, then supz€(;|z“| = (Ia\‘“‘ , a
result which can be found e.g. in [15, Lemma 1.38].
Example 3.6. Let n>2 and py, ...,p,>0.
(1) If all 0<pr <2, then
1 Ly min g, 1
1, SB(Rp) <2 (log n)2t!/min P o
(2) If all 2<py < o0, then
1 A
< B(Ry) <P (log L
3n§+l/min Pk n§+1/max Dk
Proof. Define p := min p;, and get, by (3.2) for all m
TR
ot ]
sup{|”| : 2 Ry} 25>
mb1 Pn mp
for all xe (NU{0})" such that |o| = m. Hence for all m
1
inf sup{[z*|: ze R} >—x
lot|=m mp
and therefore
1
bm(R ! "_1<mz’l
m(Ripy) = inf,_,,sup{|z*| : ze R, } s
Thus
—1_
an(R(pk)) = b[log n| (R(pk)) < (lOg n)mm Pi. (33)

Now, if we assume 0<px <2, k =1, ...,n, then S(R(,,), Bs;) < 1. Applying Corollary
3.4, we obtain (1). In the case that 2<pr<oo for all k=1,...,n, we have
S(R(pk),B/»jx)Sl and S(B/"va(pk)) = b such that
1 1
m + + bpn

To get an upper estimate of b we observe that B/; =R,)- Hence, by (2.6)

=1.

1
S(R(pk),B/’th)S(B/*;,R@U)<S(B/’;,B/;) =nb.

If we denote g == max pi, we have Ry, =B, then by (2.6)

11
S(Riy), Br) <S(Bpr, Byy) = n* 4.

Finally, (3.3) and Corollary 3.4 give (2). O
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Note that if in the above example, we consider the case that all 0 <p; = p, then we
recover (1.3), the asymptotic estimates for B(B/;;) obtained by Boas for 1 <p< o0 in

[9, Theorem 5] (but our log-term is worse whenever 1<p<2). In any case the
asymptotic estimates obtained in this example are far from sharp as the next example
shows.

Example 3.7. Fix reN. Given py,...,p,>2, let R={zeC": |z + - + |z,|" +
|zec1|* + -+ + |za]* <1}. Then, we have
logn

1
—<B(R)<C ,
3n (R) n
for all n>r, where 0< C<e32¥2(r + 1)'/2.

The left inequality is obtained in Example 3.6. On the other hand it is very easy to
check S(R, Byy) < (r+ N2,

Let us collect some more examples in order to illustrate our results. Recall the
definition of mixed Minkowski spaces:

m 1/17
£y (g) =il s xm € CF with [[(xk)i [l = <kz IIXkIIZ> -
=1

Example 3.8. Let m,neN with m,n>2.

(1) For O0<p,¢<2

11 3432 L1 1
< m( ) < 2 min{p,q}
3 mn\B(B/ﬂ (m)<e2”"(logmn) p

(2) For 2<p,g< ©

11 Lo
311 aSBByw) <2 (log mn)? minipd) ————.
m2 o2ty m2 rn2ta

Proof. The space //(/;) has dimension mn. By applying Corollary 3.4

1 1 1

—max{ —, < B(Bms

3 {mn VmnS (B/;’(/;>,B/'z;")S(B/';",B/;;’(/;;))} (Bryey)
S(Bymsmy, Brom)

<232\ flogmn A (Byn(eny) — (3.4)
As B/;:’iln(w} = B/::;"]{M) (i) CB[;;I({Z), by (33) we get that for all D, q>0

1
Amn (B/;j’(/;})) < (log mn)mm{P’q} .

Moreover, if 0<p,¢<2 then S(B/,’J’(/l,’)> Bym)<1 and we obtain (1).
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The inclusion Byn /n < By implies S(B/gr(fz), B/m)< 1. In the proof of Defant et al.
[12, Example 4.5] it is pointed out that for 1<a,b,c,d<
S(Byremys Bymeny) = S(Bym, Bym)S(Br, Byn),
hence by (2.6)

R =

1
S(Bym, Bmem) = S(Byn , Bem)S(Bp, Br) = mPnd,

1

1
S(B/;;I(/2)7 B{g””) = S(B/ZH B/E”)S(B/Z,B/;) =m? Pn

1
q

=

for all 2<p, g< 0. Now (2) follows from (3.4). O

Remark 3.9. There exists an one to one correspondence between bounded convex
complete Reinhardt domains in C" and the open unit balls of the norms in C" for
which (ex);_;, the canonical basis of C", is I-unconditional. Indeed, the Minkowski
gauge of R (i.e., ||z||g = Inf{A : ze AR}, zeC")is a norm on C" and R coincides with
the open unit ball of (C",||.||g). The fact that R is n-circular and balanced implies
that (ex);_, is an l-unconditional basis of (C", ||.||z). Reciprocally, if X = (C",|[.|])
is a Banach space, such that (e);_, is an l-unconditional basis, then it is trivial that
its open unit ball By is a bounded convex complete Reinhardt domain in C". Hence,
the study done in [12] about the first Bohr radii for the unit balls of finite dimensional
complex Banach spaces X = (C",||.||) for which the canonical bases are normalized
and 1-unconditional, is essentially the study of convex bounded complete Reinhardt
domains in C". But there it is very useful to be able to apply many results from the
local Banach space theory. For the second Bohr radius a parallel study could be
made. We are going to state only two corollaries to illustrate this possible
development. We refer to [12,19] for the unexplained terms.

Corollary 3.10. Let X = (C",||.||) be a 2-convex symmetric Banach space such that
M@ (X) = 1. Then for all n>2

Bl—
No—

n 2 n 2
1 supy. _1lz supy. _11z
1 p||_H<1(Zk_1| %l ™) <B(BX)<6323/2 Tog nan(By) P\\L||<1(Zk_1‘ k7 .

3 n n

Proof. The upper bound is a direct consequence of Theorem 3.3. For the lower
bound we apply Proposition 3.2 to get

1
3\/nS(Bx, B )S(Bs , Bx)

Since, by hypothesis, By = B , we have S(By, ", )<1. Now, to finish the proof it is
enough to show that

Sup||zu<1(EZ:1|Zk|2) _ 1
n \/ﬁS(B/’;vBX)

< B(By).

o=
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To prove this equality we follow the pattern of Defant et al. [12, Corollaries 5.3, 5.4].
The canonical basis is 1-unconditional, thus

szek :|zk|<lk:l,...,n}: En:ek.
k=1

Moreover, since X is symmetric, by Lindenstrauss and Tzafriri [19, Proposition
3.a.6], we have that

n n
D e |2«
k=1 X

X* k=1
Finally, in [14, Proposition 3.5] (see also [21, Proposition 3.5]) it is shown that under
our assumptions on X

1
up (Zﬂ)z ||zkfk|x -

[l <1

S(B , By) —sup{

=n.

The last corollary is an analogue for the second Bohr radius of the one given for the
first Bohr radius in [12, Corollary 5.4]. The proof follows a similar pattern.

Corollary 3.11. Let X = (C",||.||) be a symmetric Banach space. Then
d(Xx,/
B(By)B(By-)<C* logn¥.
Moreover, if we assume M (X) = 1 then
1 d(X, /)
c?
for all n>2, where 0< C<e323/2.

X n
<K(Bx)K(By)<C?logn A, 0)

Since d(X,/5)<+/n (see e.g. [22, p. 249]) we obtain that for any sequence (X),) of
symmetric n-dimensional Banach spaces X, = (C",||.||,,)

lim B(Bx,)B(Bx;) = 0. (3.5)
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